
Custom Die Casting Services
A comprehensive overview of the die casting process, methods and our custom manufacturing services. SKS is a resource for all your industrial die casting & machining needs.
What is Die Casting?
Die casting is a versatile process that produces engineered die cast parts through a forced high-pressure method of forcing molten metal into molds built from high grade steels. Die casting can be produced in nearly every conceivable size and shape. It provides the freedom to design intricate configurations that meet the functional requirement of the component.
The die casting process produces castings with close tolerances, often eliminating the need of machining operations. Depending on your specific aluminum casting application, there are many different types of die casting processes that can be achieved. Contact SKS Die Casting for Custom Die Applications or Request a Quote to start your die casting project today.
SKS's Aluminum & Zinc Die Casting Services
At SKS, we can perform numerous die casting methods utilizing different types of die casting materials including primarily aluminum and zinc alloys. Some of the advantages associated with both materials include:
Aluminum Die Casting Services
Aluminum casting alloys have been proven ideal for a wide range of products because of the unique combination of qualities they possess lightweight, good corrosion resistance, high tensile strength, high dimensional stability, and high thermal and electrical conductivity. Alloy 380.0 is the most used aluminum alloy for die casting and has been found to meet customers' various needs. Importantly, SKS can also cast Aluminum Alloys 360, 390 and 413.
Zinc Die Casting Services
The mechanical properties of zinc alloy die castings at normal temperatures are superior to sand castings of grey iron, brass, and aluminum, particularly in toughness and impact strength. They are much stronger, tougher, and more dimensionally stable than injection molded plastics. The reduced cost and improved properties have made it an ideal replacement for iron, copper, aluminum alloys or plastics parts.
The Die Casting Process
The standard die casting application process consists of injecting high pressure molten metal into a steel mold called a die. A complete die casting cycle can vary from less than a few seconds for small components to 2-3 minutes for a casting of over 30 lbs, making die casting the fastest technique available for producing precise non-ferrous metal parts. The following processes are routinely used to create custom die casting applications.
The 5 Stages of the Die Cast Process Cycle
1. Clamping:
The first step in the die casting process involves the preparation and clamping of two die halves. Once cleaned and properly prepared, the two clean die halves are lubricated to prevent sticking and then closed, securely clamping them together. During this phase, force must be applied to the die to keep it secure while the metal is injected.
2. Injection:
Once transferred from either a hot chamber machine or cold chamber machine, the molten metal is injected into the die through a high-pressure process. These pressures can range from 31,000 to 20,000 psi. The total injection time required for a project will depend upon the length of time required to fill all the cavities and channels within the die. The correct duration of injection time can be determined by the thermodynamic properties of the material, as well as the wall thickness of the casting. Greater wall thickness will require a longer injection time.
3. Cooling:
The cooling process begins the moment the molten metal enters the die cavity. Once the entire cavity of the mold is filled and the molten metal solidifies, the final shape of the casting is formed. It is important that the die not be opened until it has completely cooled. This ensures that the casting is completely solidified. Greater wall thickness will require a longer cooling time. Additionally, the geometric complexity of the die also requires a longer cooling time due to the additional resistance to the flow of heat.
4. Ejection:
Once the proper amount of cooling time has elapsed, the die halves can be opened and ejected from the die cavity. Once the casting is ejected, the die can be clamped shut for the next injection.
5. Trimming:
Excess material and flash must be trimmed from the channels of the die due to solidification during the casting process. This is accomplished either manually or through the assistance of trim die. a saw, or trimming press. The scrap material that results from this trimming is either discarded or can be reused in the die casting process.
Die Casting for Manufacturing Applications
Die casting manufacturers can produce many interesting types of die casting applications that create parts and components that are truly unique and highly functional. Depending on your specific parameters, one type of die casting application may be more favorable than another. At SKS Die Casting, we can perform various aluminum die casting application processes based on your exact project specifications, ensuring that your part is suitable for the environment in which it will perform.
Types of Die Casting Methods
The two main die casting processes are hot chamber and cold chamber die casting.
Cold Chamber Die Casting
Within this die casting application process, molten metal is poured into the cold chamber or cylindrical sleeve by ladle. A hydraulically operated plunger seals the cold chamber port and forces the metal into the die cavity at high pressure. Cold chamber die casting machines are used for aluminum alloys or Zinc alloys with high melting points.
Hot Chamber Die Casting
Hot chamber die casting machines are primarily used for zinc alloys, copper, lead, and other low melting point alloys. The injection mechanism of a hot chamber machine is immersed in a molten metal bath of a metal holding furnace. The furnace is attached to the machine by a metal feeding system called the gooseneck.
Advantages of Die Cast Parts
Die casting allows for the creation of die cast parts with complex shapes and intricate designs at a price point that doesn’t break the bank. Some of the greatest benefits associated with die casting include:
- Advanced production speed
- Accurate dimensional stability
- Tight tolerances
- Variable wall thicknesses
- Fast production times
- Reduction in scrap
- Extended tool life